Nacional

Apostila Analista de Ciências de Dados BNDES 2024

Edital Publicado
Edital Publicado
Prova 13/10/2024
Prova 13/10/2024
Nível Superior
Nível Superior
Banca Fundação Cesgranrio
Banca Fundação Cesgranrio
Vagas 150 + 750 CR
Vagas 150 + 750 CR
Inscrição Até 19/08/2024
Inscrição Até 19/08/2024
Inscrições R$110,00
Inscrições R$110,00
Salário Até R$20.900,00
Salário Até R$20.900,00

Conteúdo Programático (2829 Páginas)

Conhecimentos Básicos
(Totalmente de Acordo com Edital 2024)

Língua Portuguesa: 1. Compreensão de texto. 2. Ortografia oficial. 3. Mecanismos de coesão textual. 4. Significação das palavras. 5. Emprego das classes de palavras. 6. Coordenação e de subordinação. 7. Emprego dos sinais de pontuação. 8. Concordância verbal e nominal. 9. Regência verbal e nominal.

Língua Inglesa: 1. Compreensão de texto em língua inglesa. 2. Itens gramaticais relevantes. 3. Vocabulário. 4. Mecanismos de coesão textual (referenciação e sequenciação). 5. Semântica.

Conhecimentos Transversais: 1. Políticas Públicas e Desenvolvimento: 1.1 Planejamento governamental, finanças e gestão pública; 1.2 Papel das instituições; 1.3 Noções sobre finanças públicas, ciclo orçamentário, controles interno e externo; 1.4 Noções básicas e estágios do ciclo político-administrativo da política pública; 1.4.1 Importância do monitoramento e da avaliação da efetividade das políticas públicas; 1.4.2 Modelos de análise de políticas públicas; 1.5 Formas de atuação da política pública; 1.5.1 Programas sociais e de garantia da renda; 1.5.2 Incentivos tributários, subsídios e taxação; 1.6 Papel das compras públicas no adensamento produtivo e tecnológico; 1.7 Políticas fiscal e monetária verdes. 2. Papel do BNDES no desenvolvimento brasileiro: 2.1 História política e econômica do Brasil e o papel do BNDES no desenvolvimento do país; 2.1.1 O papel histórico do BNDES nos diferentes planos econômicos e a questão regional do País; 2.2 O BNDES e as políticas públicas atuais: Novo PAC, Nova Indústria Brasil e Plano de Transformação Ecológica como elementos de neoindustrialização e descarbonização da economia; 2.3 O papel dos bancos de fomento no desenvolvimento econômico e social; 2.3.1 Modelos de atuação direto e indireto; 2.4 Formas de atuação do BNDES; 2.4.1 Estruturação e financiamento de projetos de infraestrutura; 2.4.2 Financiamento à exportação; 2.4.3 Financiamento às micro, pequenas e médias empresas; 2.4.4 Atuação via Mercado de Capitais; 2.4.5 Financiamento à indústria. 3. Clima, Sustentabilidade e Responsabilidade Socioambiental e Climática: 3.1. Meio Ambiente e Sustentabilidade; 3.2 Política Nacional de Meio Ambiente (PNMA – Lei nº 6938/1981 e suas alterações); 3.2.1 Licenciamento ambiental – Portal Nacional de Licenciamento Ambiental (PNLA); 3.2.2 Sistema Nacional de Unidades de Conservação da Natureza (SNUC – Lei nº 9.985/2000 e suas alterações); 3.2.3 Lei sobre a Proteção da Vegetação Nativa (conhecida como Novo Código Florestal – Lei nº 12.651/2012 e suas alterações); 3.3 Clima e Sustentabilidade; 3.3.1 Mudanças climáticas; 3.3.2 Riscos físicos e de transição; 3.3.3 Mitigação e adaptação; 3.3.4 Transição ecológica justa; 3.3.5 Política Nacional sobre Mudança do Clima (PNMC – Lei nº 12187/2009 e suas alterações); 3.3.5 Contribuição Nacionalmente Determinada (NDC, em inglês) do Brasil. 3.3.6. Perfil de emissões de gases do efeito estufa do Brasil; 3.4 Desenvolvimento e finanças sustentáveis; 3.4.1 Desenvolvimento sustentável, responsabilidade socioambiental, consumo consciente e economia circular; 3.4.2. Bioeconomia. 3.4.3. Biodiversidade e Soluções Baseadas na Natureza 3.5 Objetivos de Desenvolvimento Sustentável – ODS: Agenda 2030. 3.6 Oportunidades e Riscos sociais, ambientais e climáticos no Sistema Financeiro; 3.6.1 Política de Responsabilidade Social, Ambiental e Climática (PRSAC) das instituições financeiras; 3.6.2 Resoluções CMN nº 4557/2017 e nº 4945/2021, suas alterações e normativos associados; 3.6.3 Divulgação de informações socioambientais e climáticas das instituições financeiras; 3.6.4 Finanças Sustentáveis e Aspectos Ambientais, Sociais e de Governança (ASG) de investimentos. 4. Princípios de análise de dados e informações: 4.1. Os dados e as organizações: Tipos de dados: estruturados e não estruturados; quantitativos e qualitativos. Tipos de produtos de dados (bases de dados, relatórios, planilhas, análise exploratória de dados, dashboards, modelos de aprendizado de máquina) e seus usos (explorar, alertar, descrever, explicar, prever, recomendar, otimizar). Princípios de organizações orientadas a dados. Governança de dados e seus benefícios; 4.2. Etapas do ciclo de análise de dados (CRISP-DM). Fundamentos para criação de métricas de negócio (KPIs). Técnicas de identificação de causa raiz (Diagrama de Ishikawa, Cinco Porquês, Análise de Pareto); 4.3. Estruturas lógicas e noções básicas de lógica: conectivos, tautologia, contradições, contingência, implicações, equivalências, quantificadores, afirmações e negações. Lógica de argumentação: analogias, inferências, deduções, conclusões e silogismos. Lógica proposicional: proposições simples e compostas. Tabelas-verdade. Equivalências. Leis de De Morgan; 4.4. Coleta e preparação dos dados. Problemas comuns em dados: outliers, dados faltantes, erros no tipo dos dados e viés de seleção; 4.5. Análise de Dados: Estatística descritiva: medidas de posição (média, mediana, moda, quartis), de dispersão (variância, desvio-padrão) e de associação (correlação de Pearson). Correlação e causalidade. Princípios básicos de inferência estatística: noções de amostragem (população, e amostra), erro amostral, noções fundamentais de probabilidade (conceitos fundamentais, probabilidade condicional e independência), distribuições de probabilidade comuns (uniforme, normal, binomial e exponencial), conceitos básicos de estatística indutiva; 4.6. Introdução à visualização de dados: Tipos de gráficos (barras, pizza, linha, dispersão, histograma), como interpretá-los e quando utilizá-los. Boas práticas para a construção de gráficos (escala dos eixos, margens de erro, disposição de mais de uma série em um único gráfico, ênfase em uma série ou em um ponto, barra ou fatia específicos). Princípios de storytelling com dados; 4.7. Uso responsável de dados: Lei Geral de Proteção de Dados Pessoais – LGPD (Lei nº 13.709/2018 e suas alterações). 5. Diversidade e Inclusão: 5.1 O papel do Estado brasileiro no combate à pobreza; 5.2 O papel do BNDES na redução de desigualdades econômicas, sociais e territoriais no Brasil; 5.3 Direitos Humanos, Objetivos de Desenvolvimento Sustentável – ODS 2030 e diversidade; 5.4 Interseccionalidade e suas interfaces com marcadores sociais de raça, cor e etnia, classe, idade, deficiência, localização geográfica, sexualidade, expressão e identidade de gênero; discriminação e exclusão social e digital; 5.5 Índice de Diversidade B3 – IDIVERSA B3: objetivo e metodologia; 5.6 Desafios sociopolíticos da inclusão de grupos vulnerabilizados: crianças e adolescentes; idosos; LGBTQIA+; pessoas com deficiências; povos originários, comunidades quilombolas e demais minorias sociais; 5.7 Desafios territoriais: a questão urbana e regional no Brasil – disparidades e segregação socioespacial.

Matemática: 1. Cálculo Básico: funções; limites; derivadas; derivadas parciais; máximos e mínimos; integrais. 2. Álgebra Linear: vetores e matrizes; operações com vetores e matrizes; tipos de matrizes; transformações lineares; espaços e subespaços vetoriais de Rn ; sistemas de equações lineares; normas (L1, L2, infinita, p-generalizada, Minkowksi e Chebyshev), autovalores e autovetores; decomposição matricial (Cholesky e Singular Value Decomposition (SVD)). 3. Otimização Matemática: programação linear inteira e mista; problemas de otimização unidimensionais e multidimensionais, com e sem restrições; otimização convexa; programação dinâmica.

Probabilidade e Estatística: 1. Fundamentos de probabilidade: definições básicas de probabilidade; axiomas; probabilidade condicional. 2. Variáveis aleatórias e distribuições de probabilidades: variáveis aleatórias; funções de probabilidade; principais distribuições discretas e contínuas (Uniforme, Binomial, Normal, Poisson, Bernoulli e Exponencial). 3. Estatísticas Descritivas: medidas de tendência central (média, mediana e moda); medidas de dispersão (variância, desvio padrão e amplitude); medidas de posição (percentis e quartis). 4. Teoremas fundamentais da probabilidade: independência de eventos; teorema de Bayes; teorema da probabilidade total; lei dos grandes números; teorema central do limite. 5. Distribuições amostrais: distribuição amostral da média; distribuição amostral da proporção; distribuição qui-quadrado; distribuição t de Student; distribuição F. 6. Inferência estatística: estimação pontual e intervalar; intervalos de confiança; testes de hipóteses (formulação, tipos de erros, e poder do teste); testes z e t para médias; testes de proporções; testes qui-quadrado para independência e ajuste de Goodness-of-Fit; teste A/B. 7. Correlação: correlação e causalidade; correlação de Pearson; correlação de Spearman; correlação parcial. 8. Inferência Bayesiana: distribuições a priori e a posteriori; estimativa pontual e intervalar; predição e testes de hipóteses bayesianos; critérios de seleção de modelos; métodos MCMC.

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Botão Voltar ao topo